MAGESI Mercredi 05 août 2020
Fermer

Thème : Choix didactiques
Espaces instrumentés

Taille de l'espace

Macro-, méso-, micro- espaces

Le macro-espace, de l'espace de la ville à l'espace interstellaire, n'est pas abordé ici. Au-delà du repérage, un travail dans ce type d'espace fait intervenir des notions complexes de géométrie dans l'espace, de représentation et d'échelle, de géographie. Si une approche du repérage et du codage des trajets peut être faite, y compris dans les cycles précédant le cycle 3, une étude de l'isométrie et de la perpendicularité dans ce type d'espace semble prématurée !

On trouve chez Brousseau 1983 une définition du méso-espace : "espace des déplacements du sujet dans un domaine contrôlé par la vue, les objets sont fixes et mesurent entre 0,5 et 50 fois la taille du sujet". Le sujet est à l'intérieur de l'espace. Il prend conscience d'objets isolés par des changements de points de vue, des changements de regards. Des exemples de méso-espace seront pour nous un mur, le sol d'une salle polyvalente ou d'une cour de récréation.

Un micro-espace est défini par Brousseau comme l' "espace des interactions liées à la manipulation des petits objets". L'élève est extérieur à cet espace et peut avoir une vision (relativement) globale des objets. Des exemples de micro-espaces seront, dans cette ingénierie, la feuille de papier ou l'écran d'ordinateur.

Un même espace peut être un méso-espace pour un sujet si sa distance à cet espace est petite et s'il se trouve "dans" cet espace, ou un micro-espace s'il est à une certaine distance de cet espace. Ainsi une feuille de papier A3 peut être soit un méso-espace, soit un micro-espace.

Présentation des objets dans les méso- et micro-espaces

Selon la taille de l'espace, les objets et relations géométriques ont des "matérialités" différentes. Les propriétés spatiales et les propriétés géométriques n'y sont pas perçues immédiatement (sous contrôle perceptif simple) de la même façon.

Dans le méso-espace, les objets et leurs propriétés sont vues
- soit "de face" avec un déplacement du regard, ce qui met en jeu une mémoire visuelle lié au temps de parcours de l'objet et/ou à l'angle de vision de ces objets
- soit avec un recul permettant d'englober le méso-espace en un seul regard, mais alors les propriétés sont malmenées par la perspective à moins que des connaissances culturelles ou autres ne viennent nous renseigner
- soit encore avec plusieurs regards sur des objets dans des plans non frontaux.
Le contrôle perceptif simple y est donc très difficile voire impossible. En particulier, les propriétés métriques ne peuvent être perçues directement.


Méso-espace Micro-espace
Point Objet de dimension "minimale" Une croix, un trait, une marque
Droite Savoir quotidien
Corde tendue
Ligne de visée
Plus facile à prolonger ?
Lien avec la règle
Vision globale
Trait "droit" (non courbe)
Trait borné
Segment Portion de droite que les yeux parcourent d'un point à un autre ou vue sous un angle donné Trait droit "limité", vu globalement.
Angle "Lieu" où des droites se coupent Secteur angulaire
Alignement Points sur une corde tendue
Points sur une même ligne de visée
Points par lesquels on peut faire passer un trait (règle)
Isométrie Temps estimés identiques pour parcourir les segments
Angles de vision estimés identiques
Estimation des longueurs des segments
Perpendicularité Difficile à lire, sauf pour le cas verticale-horizontale
Vision globale plus facile
Stéréotypes
Milieu Estimation de l'identité du temps de parcours du regard de chacune des extrémités à ce point
Estimation de l'identité des angles de vision de chacune des extrémités à ce point
Estimation des longueurs des deux segments déterminés
Cercle Vision globale d'une courbe fermée de rayon de courbure (à peu près) constant dans un plan frontal.
Courbe "régulière" fermée (pas de différence entre ellipse et cercle) dans les autres cas.
Vision globale d'une courbe fermée de rayon de courbure (à peu près) constant.
Figures planes particulières Propriétés difficiles à lire, déplacement et/ou instrumentation nécessaires
Pas de positions stéréotypées (sauf s'il y a présence d'un plan frontal)
Vision des propriétés possible (cf. ci-dessus)

Positions stéréotypées
Parallélisme Difficile à lire (sauf pour le cas de deux verticales) Vision globale. Distance entre les droites semble constante. Point d'intersection inexistant
Symétrie Mémoire visuelle difficile à gérer entre le parcours visuel de la première figure et le parcours visuel de la seconde, même dans un plan frontal. Vision globale et mémorisation plus aisée de chacune des figures.
Possibilité de vérifier les symétries de sous-objets de la figure

Un travail de présentation des objets dans le méso-espace, montrant la facilité ou la difficulté à les reconnaître, doit être fait par l'enseignant : à l'heure actuelle les élèves n'ont plus beaucoup de connaissances de ce type. De même, l'association entre la présentation d'un objet dans le méso-espace et sa présentation dans un micro-espace doit être un souci de l'enseignant.

Apports du changement de taille

Un premier apport est celui cité ci-dessus : une meilleure connaissance des objets géométriques dans le méso-espace. Mais on peut aussi espérer une retombée dans le micro-espace de la géométrie papier-crayon.

Dans un espace sensible micro, une problématique pratique (Berthelot et Salin 1994 et 2000) et un contrôle perceptif simple conviennent parfaitement. Un problème de construction posé dans un tel espace peut être réglé à moindre coût avec utilisation de calques, de gabarits, de mesures et validation par un contrôle perceptif simple.
Dans un espace sensible méso, le contrôle perceptif simple donne de moins bons résultats, voire est impossible. Il faut alors trouver ou construire des instruments utilisables dans ce type d'espace, et/ou passer à une modélisation (Berthelot et Salin) dans un micro-espace géométrique (pour minimiser les efforts à fournir dans le méso-espace).

Deux types de situations semblent a priori possibles :

Poser le même problème dans les deux types d'espace.
On peut poser, dans un méso-espace, un problème de construction dont la résolution demande une utilisation de connaissances géométriques car non résoluble avec le seul contrôle perceptif simple ; puis poser le même problème dans un micro-espace en espérant que la résolution sera elle aussi avec modélisation spatio-géométrique (et non pas de façon pratique "seulement").


Par exemple, il est demandé aux élèves de faire un grand carré sur le sol puis de faire un carré sur une feuille de papier (sur l'écran de l'ordinateur), en espérant que le carré ne pouvant être fait et validé à vue dans le méso-espace ne sera plus fait et validé "à vue" dans le mico-espace.

Poser dans un méso-espace un problème dont la résolution demande un transfert dans un micro-espace..
On peut poser un problème dont la résolution directe dans le méso-espace est difficile, et qui demande une modélisation et une résolution dans un micro-espace. Vient ensuite un retour dans le méso-esapce dans lequel il y a validation de la solution.


Il est par exemple demandé aux élèves de faire "une route" (une bande aux bords parallèles) sur le sol, en sachant que ce tracé très difficile peut être travaillé dans un micro-espace avant un retour sur le terrain.